Figure: 28 TAC §4.2824(2)

The length of a particular contract segment $\underline{\text{must}}$ [shall] be set equal to the minimum of the value t for which G_t is greater than R_t (if G_t never exceeds R_t the segment length is deemed to be the number of years from the beginning of the segment to the mandatory expiration date of the policy), where G_t and R_t are defined as follows. [:]

 $G_t = GP_{x+k+t} / GP_{x+k+t-1}$

where:

x = original issue age;

k = the number of years from the date of issue to the beginning of the segment;

t = 1, 2, ...; t is reset to 1 at the beginning of each <u>segment;</u>

 $GP_{x+k+t-1}$ = Guaranteed gross premium per thousand of face amount, for year t of the segment ignoring policy fees only if such policy fees are level for the premium paying period of the policy.

 $R_t = \frac{q_{x+k+t}}{q_{x+k+t-1}}$. However, R_t may be increased or decreased by $\frac{1\%}{q_{x+k+t-1}}$ [one percent] in any policy year, at the company's option, but R_t must [shall] not be less than one;

where:

x, k and t are as defined above, and $q_{x+k+t-1}$ = valuation mortality rate for deficiency reserves in policy year <u>k+t</u> but using the mortality of §4.2825(b)(2) [§3.4505(b)(2)] of this <u>title</u> [subchapter (relating to General Calculation Requirements for Basic Reserves and Premium Deficiency Reserves)] if §4.2825(b)(3) [§3.4505(b)(3)] of this <u>title</u> [subchapter (relating to General Calculation Requirements for Basic Reserves and Premium Deficiency Reserves)] is elected for deficiency reserves.

However, if GP_{x+k+t} is greater than 0 and $GP_{x+k+t-1}$ is equal to 0, G_t must [shall] be deemed to be 1000. If GP_{x+k+t} and $GP_{x+k+t-1}$ are both equal to 0, G_t must [shall] be deemed to be 0.